walnux/arch/arm/src/armv7-a/arm_gic.c

307 lines
10 KiB
C
Raw Normal View History

/****************************************************************************
* arch/arm/src/armv7-a/arm_gic.c
*
* Copyright (C) 2016 Gregory Nutt. All rights reserved.
* Author: Gregory Nutt <gnutt@nuttx.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name NuttX nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <sys/types.h>
#include <stdint.h>
#include <arch/irq.h>
#include "up_arch.h"
#include "gic.h"
#ifdef CONFIG_ARMV7A_HAVE_GIC
/****************************************************************************
* Public Functions
****************************************************************************/
/****************************************************************************
* Name: arm_gic_initialize
*
* Description:
* Perform basic GIC initialization for the current CPU
*
* Input Parameters:
* None
*
* Returned Value:
* None
*
****************************************************************************/
void arm_gic_initialize(void)
{
unsigned int nlines;
unsigned int irq;
uint32_t regval;
uint32_t field;
#ifdef CONFIG_SMP
int cpu;
/* Which CPU are we initializing */
cpu = up_cpu_index();
#endif
/* Get the number of interrupt lines. */
regval = getreg32(GIC_ICDICTR);
field = (regval & GIC_ICDICTR_ITLINES_MASK) >> GIC_ICDICTR_ITLINES_SHIFT;
nlines = (field + 1) << 5;
/* Initialize SPIs. This should be done only by CPU0. */
#ifdef CONFIG_SMP
if (cpu == 0)
#endif
{
/* A processor in Secure State sets:
*
* 1. Which interrupts are non-secure (ICDISR).
* REVISIT: Which bit state corresponds to secure?
* 2. Trigger mode of the SPI (ICDICFR). All fields set to 11->Edge
* sensitive.
* 3. Innterrupt Clear-Enable (ICDICER)
* 3. Priority of the SPI using the priority set register (ICDIPR).
* All set to the middle priority 0x80.
* 4. Target that receives the SPI interrupt (ICDIPTR). Set all to
* CPU0.
*/
/* Registers with 1-bit per interrupt */
for (irq = GIC_IRQ_SPI; irq < nlines; irq += 32)
{
putreg32(0x00000000, GIC_ICDISR(irq)); /* SPIs secure */
putreg32(0xffffffff, GIC_ICDICFR(irq)); /* SPIs edge triggered */
putreg32(0xffffffff, GIC_ICDICER(irq)); /* SPIs disabled */
}
/* Registers with 8-bits per interrupt */
for (irq = GIC_IRQ_SPI; irq < nlines; irq += 8)
{
putreg32(0x80808080, GIC_ICDIPR(irq)); /* SPI priority */
putreg32(0x01010101, GIC_ICDIPTR(irq)); /* SPI on CPU0 */
}
}
/* Initialize SGIs and PPIs. NOTE: A processor in non-secure state cannot
* program its interrupt security registers and must get a secure processor
* to program the registers.
*/
/* Registers with 1-bit per interrupt */
putreg32(0x00000000, GIC_ICDISR(0)); /* SGIs and PPIs secure */
putreg32(0xf8000000, GIC_ICDICER(0)); /* PPIs disabled */
/* Registers with 8-bits per interrupt */
putreg32(0x80808080, GIC_ICDIPR(0)); /* SGI[3:0] priority */
putreg32(0x80808080, GIC_ICDIPR(4)); /* SGI[4:7] priority */
putreg32(0x80808080, GIC_ICDIPR(8)); /* SGI[8:11] priority */
putreg32(0x80808080, GIC_ICDIPR(12)); /* SGI[12:15] priority */
putreg32(0x80000000, GIC_ICDIPR(24)); /* PPI[0] priority */
putreg32(0x80808080, GIC_ICDIPR(28)); /* PPI[1:4] priority */
/* Set FIQn=1 if secure interrupts are to signal using nfiq_c.
* NOTE: Only for processors that operate in secure state.
* REVISIT: Do I need to do this?
*/
/* Program the AckCtl bit to select the required interrupt acknowledge
* behavior.
* NOTE: Only for processors that operate in both secure and non-secure
* state.
*/
#warning Missing logic
/* Program the SBPR bit to select the required binary pointer behavior.
* NOTE: Only for processors that operate in both secure and non-secure
* state.
*/
#warning Missing logic
/* Set EnableS=1 to enable CPU interface to signal secure interrupts.
* NOTE: Only for processors that operate in secure mostatede.
*/
#warning Missing logic
/* Set EnableNS=1 to enable the CPU to signal non-secure interrupts.
* NOTE: Only for processors that operate in non-secure state.
* REVISIT: Initial implementation operates only in secure state.
*/
/* Set the binary point register.
* NOTE: If the processor operates in both security state and SBPR=0,
* then it must switch to the other security state and repear the
* programming of the binary point register so that the binary point
* will be programmed for interrupts in both security states.
*/
#warning Missing logic
/* Enable the distributor by setting the the Enable bit in the enable
* register.
*/
putreg32(GIC_ICCICR_ENABLE, GIC_ICCICR);
/* A processor in the secure state must then switch to the non-secure
* a repeat setting of the enable bit in the enable register. This
* enables distributor to respond to interrupt in both security states.
* REVISIT: Initial implementation operates only in secure state.
*/
}
/****************************************************************************
* Name: arm_decodeirq
*
* Description:
* This function is called from the IRQ vector handler in arm_vectors.S.
* At this point, the interrupt has been taken and the registers have
* been saved on the stack. This function simply needs to determine the
* the irq number of the interrupt and then to call arm_doirq to dispatch
* the interrupt.
*
* Input parameters:
* regs - A pointer to the register save area on the stack.
*
****************************************************************************/
uint32_t *arm_decodeirq(uint32_t *regs)
{
# warning Missing logic
return regs;
}
/****************************************************************************
* Name: up_enable_irq
*
* Description:
* On many architectures, there are three levels of interrupt enabling: (1)
* at the global level, (2) at the level of the interrupt controller,
* and (3) at the device level. In order to receive interrupts, they
* must be enabled at all three levels.
*
* This function implements enabling of the device specified by 'irq'
* at the interrupt controller level if supported by the architecture
* (up_irq_restore() supports the global level, the device level is hardware
* specific).
*
* Since this API is not supported on all architectures, it should be
* avoided in common implementations where possible.
*
****************************************************************************/
void up_enable_irq(int irq)
{
/* Ignore invalid interrupt IDs. Also, in the Cortex-A9 MPCore, SGIs are
* always enabled. The corresponding bits in the ICDISERn are read as
* one, write ignored.
*/
if (irq > GIC_IRQ_SGI15 && irq < NR_IRQS)
{
uintptr_t regaddr;
/* Write '1' to the corresponding bit in the distributor Interrupt
* Set-Enable Register (ICDISER)
*/
regaddr = GIC_ICDISER(irq);
putreg32(GIC_ICDISER_INT(irq), regaddr);
}
}
/****************************************************************************
* Name: up_disable_irq
*
* Description:
* This function implements disabling of the device specified by 'irq'
* at the interrupt controller level if supported by the architecture
* (up_irq_save() supports the global level, the device level is hardware
* specific).
*
* Since this API is not supported on all architectures, it should be
* avoided in common implementations where possible.
*
****************************************************************************/
void up_disable_irq(int irq)
{
/* Ignore invalid interrupt IDs. Also, in the Cortex-A9 MPCore, SGIs are
* always enabled. The corresponding bits in the ICDISERn are read as
* one, write ignored.
*/
if (irq > GIC_IRQ_SGI15 && irq < NR_IRQS)
{
uintptr_t regaddr;
/* Write '1' to the corresponding bit in the distributor Interrupt
* Clear-Enable Register (ICDISER)
*/
regaddr = GIC_ICDICER(irq);
putreg32(GIC_ICDICER_INT(irq), regaddr);
}
}
/****************************************************************************
* Name: up_prioritize_irq
*
* Description:
* Set the priority of an IRQ.
*
* Since this API is not supported on all architectures, it should be
* avoided in common implementations where possible.
*
****************************************************************************/
int up_prioritize_irq(int irq, int priority)
{
2016-03-03 09:12:13 -06:00
# warning Missing logic
return OK;
}
#endif /* CONFIG_ARMV7A_HAVE_GIC */