walnux/arch/arm/src/armv7-a/arm_head.S

734 lines
23 KiB
ArmAsm
Raw Normal View History

/****************************************************************************
* arch/arm/src/armv7-a/arm_head.S
*
* Copyright (C) 2013 Gregory Nutt. All rights reserved.
* Author: Gregory Nutt <gnutt@nuttx.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name NuttX nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#ifdef CONFIG_PAGING
# include <nuttx/page.h>
# include "pg_macros.h"
#endif
#include "arm.h"
#include "cp15.h"
#include "sctlr.h"
2013-07-19 17:45:28 -06:00
#include "mmu.h"
#include "chip.h"
/**********************************************************************************
* Configuration
**********************************************************************************/
#undef ALIGNMENT_TRAP
#undef CPU_DCACHE_WRITETHROUGH
#undef CPU_CACHE_ROUND_ROBIN
#undef CPU_DCACHE_DISABLE
#undef CPU_ICACHE_DISABLE
/* There are three operational memory configurations:
*
* 1. We execute in place in FLASH (CONFIG_BOOT_RUNFROMFLASH=y). In this case
* the boot logic must:
*
* - Configure SDRAM,
* - Initialize the .data section in RAM, and
* - Clear .bss section
*/
#ifdef CONFIG_BOOT_RUNFROMFLASH
# error "Configuration not implemented"
# define DO_SDRAM_INIT 1
/* Check for the identity mapping: For this configuration, this would be
* the case where the virtual beginning of FLASH is the same as the physical
* beginning of FLASH.
*/
# if !defined(CONFIG_FLASH_START) || !defined(CONFIG_FLASH_VSTART)
# error "CONFIG_FLASH_START or CONFIG_FLASH_VSTART is not defined"
# endif
# if CONFIG_FLASH_START == CONFIG_FLASH_VSTART
# define CONFIG_IDENTITY_TEXTMAP 1
# endif
/* 2. We boot in FLASH but copy ourselves to DRAM from better performance.
* (CONFIG_BOOT_RUNFROMFLASH=n && CONFIG_BOOT_COPYTORAM=y). In this case
* the boot logic must:
*
* - Configure SDRAM,
* - Copy ourself to DRAM (after mapping it), and
* - Clear .bss section
*
* In this case, we assume that the logic within this file executes from FLASH.
*/
#elif defined(CONFIG_BOOT_COPYTORAM)
# error "configuration not implemented
# define DO_SDRAM_INIT 1
/* Check for the identity mapping: For this configuration, this would be
* the case where the virtual beginning of FLASH is the same as the physical
* beginning of FLASH.
*/
# if !defined(CONFIG_FLASH_START) || !defined(CONFIG_FLASH_VSTART)
# error "CONFIG_FLASH_START or CONFIG_FLASH_VSTART is not defined"
# endif
# if CONFIG_FLASH_START == CONFIG_FLASH_VSTART
# define CONFIG_IDENTITY_TEXTMAP 1
# endif
/* 3. There is bootloader that copies us to DRAM (but probably not to the beginning)
* (CONFIG_BOOT_RUNFROMFLASH=n && CONFIG_BOOT_COPYTORAM=n). In this case SDRAM
* was initialized by the boot loader, and this boot logic must:
*
* - Clear .bss section
*/
#else
/* Check for the identity mapping: For this configuration, this would be
* the case where the virtual beginning of RAM is the same as the physical
* beginning of RAM.
*/
# if !defined(CONFIG_DRAM_START) || !defined(CONFIG_DRAM_VSTART)
# error "CONFIG_DRAM_START or CONFIG_DRAM_VSTART is not defined"
# endif
# if CONFIG_DRAM_START == CONFIG_DRAM_VSTART
# define CONFIG_IDENTITY_TEXTMAP 1
# endif
#endif
/* For each page table offset, the following provide (1) the physical address of
* the start of the page table and (2) the number of page table entries in the
* first page table.
*
* Coarse: PG_L1_PADDRMASK=0xfffffc00
* NPAGE1=(256 -((a) & 0x000003ff) >> 2) NPAGE1=1-256
* Fine: PG_L1_PADDRMASK=0xfffff000
* NPAGE1=(1024 -((a) & 0x00000fff) >> 2) NPAGE1=1-1024
*/
#ifdef CONFIG_PAGING
# define PG_L2_TEXT_PBASE (PG_L2_TEXT_PADDR & PG_L1_PADDRMASK)
# define PG_L2_TEXT_NPAGE1 (PTE_NPAGES - ((PG_L2_TEXT_PADDR & ~PG_L1_PADDRMASK) >> 2))
# define PG_L2_PGTABLE_PBASE (PG_L2_PGTABLE_PADDR & PG_L1_PADDRMASK)
# define PG_L2_PGTABLE_NPAGE1 (PTE_NPAGES - ((PG_L2_PGTABLE_PADDR & ~PG_L1_PADDRMASK) >> 2))
# define PG_L2_DATA_PBASE (PG_L2_DATA_PADDR & PG_L1_PADDRMASK)
# define PG_L2_DATA_NPAGE1 (PTE_NPAGES - ((PG_L2_DATA_PADDR & ~PG_L1_PADDRMASK) >> 2))
#endif
/****************************************************************************
* Definitions
****************************************************************************/
/* RX_NSECTIONS determines the number of 1Mb sections to map for the
* Read/eXecute address region. This is based on CONFIG_DRAM_SIZE. For most
* ARMv7-A architectures, CONFIG_DRAM_SIZE describes the size of installed SDRAM.
* But for other architectures, this might refer to the size of FLASH or
* SRAM regions. (bad choice of naming).
*/
#define RX_NSECTIONS ((CONFIG_DRAM_SIZE+0x000fffff) >> 20)
/****************************************************************************
* Assembly Macros
****************************************************************************/
/* The ARMv7-A L1 page table can be placed at the beginning or at the end of
* the RAM space. This decision is based on the placement of the vector
* area: If the vectors are place in low memory at address 0x0000 0000, then
* the page table is placed in high memory; if the vectors are placed in
* high memory at address 0xfff0 0000, then the page table is locating at
* the beginning of RAM.
*
* For the special case where (1) the program executes out of RAM, and (2)
* the page is located at the beginning of RAM (i.e., the high vector case),
* then the following macro can easily find the physical address of the
* section that includes the first part of the text region: Since the page
* table is closely related to the NuttX base address in this case, we can
* convert the page table base address to the base address of the section
* containing both.
*/
/* REVISIT: This works now of the low vector case only because the RAM
* sizes that we have been dealing with are less then 1MB so that both the
* page table and the vector table are in the same 1MB RAM block. But
* this will certainly break later. Hence, the annoying warning.
*/
#ifdef CONFIG_ARCH_LOWVECTORS
# warning "REVISIT"
#endif
//#ifndef CONFIG_ARCH_LOWVECTORS
.macro mksection, section, pgtable
bic \section, \pgtable, #0x000ff000
.endm
//#endif
/* This macro will modify r0, r1, r2 and r14 */
#ifdef CONFIG_DEBUG
.macro showprogress, code
mov r0, #\code
bl up_lowputc
.endm
#else
.macro showprogress, code
.endm
#endif
/****************************************************************************
* Name: __start
****************************************************************************/
.text
.global __start
.type __start, #function
__start:
/* Make sure that we are in SVC mode with all IRQs disabled */
mov r0, #(PSR_MODE_SVC | PSR_I_BIT | PSR_F_BIT)
msr cpsr_c, r0
/* Initialize DRAM using a macro provided by board-specific logic.
*
* This must be done in two cases:
* 1. CONFIG_BOOT_RUNFROMFLASH. The system is running from FLASH
* 2. CONFIG_BOOT_COPYTORAM. The system booted from FLASH but
* will copy itself to SDRAM.
*/
#ifdef DO_SDRAM_INIT
config_sdram
#endif
/* Clear the 16K level 1 page table */
ldr r4, .LCppgtable /* r4=phys. page table */
#ifndef CONFIG_ARCH_ROMPGTABLE
mov r0, r4
mov r1, #0
add r2, r0, #PGTABLE_SIZE
.Lpgtableclear:
str r1, [r0], #4
str r1, [r0], #4
str r1, [r0], #4
str r1, [r0], #4
teq r0, r2
bne .Lpgtableclear
/* Create identity mapping for first MB of the .text section to support
* this startup logic executing out of the physical address space. This
* identity mapping will be removed by .Lvstart (see below). Of course,
* we would only do this if the physical-virtual mapping is not already
* the identity mapping.
*/
#ifndef CONFIG_IDENTITY_TEXTMAP
mksection r0, r4 /* r0=phys. base section */
ldr r1, .LCmmuflags /* FLGS=MMU_MEMFLAGS */
add r3, r1, r0 /* r3=flags + base */
str r3, [r4, r0, lsr #18] /* identity mapping */
#endif
#ifdef CONFIG_PAGING
/* Map the read-only .text region in place. This must be done
* before the MMU is enabled and the virtual addressing takes
* effect. First populate the L1 table for the locked and paged
* text regions.
*
* We could probably make the the pg_l1span and pg_l2map macros into
* call-able subroutines, but we would have to be carefully during
* this phase while we are operating in a physical address space.
*
* NOTE: That the value of r5 (L1 table base address) must be
* preserved through the following.
*/
adr r0, .Ltxtspan
ldmia r0, {r0, r1, r2, r3, r5}
pg_l1span r0, r1, r2, r3, r5, r6
/* Then populate the L2 table for the locked text region only. */
adr r0, .Ltxtmap
ldmia r0, {r0, r1, r2, r3}
pg_l2map r0, r1, r2, r3, r5
/* Make sure that the page table is itself mapped and and read/write-able.
* First, populate the L1 table:
*/
adr r0, .Lptabspan
ldmia r0, {r0, r1, r2, r3, r5}
pg_l1span r0, r1, r2, r3, r5, r6
/* Then populate the L2 table. */
adr r0, .Lptabmap
ldmia r0, {r0, r1, r2, r3}
pg_l2map r0, r1, r2, r3, r5
#else /* CONFIG_PAGING */
/* Create a virtual single section mapping for the first MB of the .text
* address space. Now, we have the first 1MB mapping to both phyical and
* virtual addresses. The rest of the .text mapping will be completed in
* .Lvstart once we have moved the physical mapping out of the way.
*
* Here we expect to have:
* r4 = Address of the base of the L1 table
*/
ldr r2, .LCvpgtable /* r2=virt. page table */
mksection r0, r2 /* r0=virt. base section */
str r3, [r4, r0, lsr #18] /* identity mapping */
/* NOTE: No .data/.bss access should be attempted. This temporary mapping
* can only be assumed to cover the initial .text region.
*/
#endif /* CONFIG_PAGING */
#endif /* CONFIG_ARCH_ROMPGTABLE */
/* The following logic will set up the ARMv7-A for normal operation.
*
* Here we expect to have:
* r4 = Address of the base of the L1 table
*/
/* Invalidate caches and TLBs.
*
2013-07-21 12:52:38 -06:00
* NOTE: "The ARMv7 Virtual Memory System Architecture (VMSA) does not
* support a CP15 operation to invalidate the entire data cache. ...
* In normal usage the only time the entire data cache has to be
* invalidated is on reset."
*
2013-07-21 12:52:38 -06:00
* The instruction cache is virtually indexed and physically tagged but
* the data cache is physically indexed and physically tagged. So it
* should not be an issue if the system comes up with a dirty Dcache;
* the ICache, however, must be invalidated.
*/
mov r0, #0
mcr CP15_ICIALLUIS(r0) /* Invalidate entire instruction cache Inner Shareable */
2013-07-21 12:52:38 -06:00
mcr CP15_TLBIALLIS(r0) /* Invalidate entire Unified TLB Inner Shareable */
/* Load the page table address.
*
* NOTES:
* - Here we assume that the page table address is aligned to at least
* least a 16KB boundary (bits 0-13 are zero). No masking is provided
* to protect against an unaligned page table address.
* - The Cortex-A5 has two page table address registers, TTBR0 and 1.
* Only TTBR0 is used in this implementation but both are initialized.
*
* Here we expect to have:
* r0 = Zero
* r4 = Address of the base of the L1 table
*/
mcr CP15_TTBR0(r4)
mcr CP15_TTBR1(r4)
/* Clear the TTB control register (TTBCR) to indicate that we are using
* TTBR0. r0 still holds the value of zero.
*/
mcr CP15_TTBCR(r0)
/* Enable DCache write-through if so configured.
*
* The Cortex-A5 MPCore data cache only supports a write-back policy.
*/
#ifdef CPU_DCACHE_WRITETHROUGH
#endif
/* Enable the MMU and caches
* lr = Resume at .Lvstart with the MMU enabled
*/
ldr lr, .LCvstart /* Abs. virtual address */
/* Configure the domain access register (see mmu.h). Only domain 0 is
* supported and it uses the permissions in the TLB.
2013-07-21 12:52:38 -06:00
*/
mov r0, #DACR_CLIENT(0)
2013-07-21 12:52:38 -06:00
mcr CP15_DACR(r0) /* Set domain access register */
/* Configure the system control register (see sctrl.h) */
mrc CP15_SCTLR(r0) /* Get control register */
/* Clear bits to reset values. This is only necessary in situations like, for
* example, we get here via a bootloader and the control register is in some
* unknown state.
*
* SCTLR_A Bit 1: Strict alignment disabled (reset value)
* SCTLR_C Bit 2: DCache disabled (reset value)
*
* SCTLR_SW Bit 10: SWP/SWPB not enabled (reset value)
* SCTLR_I Bit 12: ICache disabled (reset value)
* SCTLR_V Bit 13: Assume low vectors (reset value)
* SCTLR_RR Bit 14: The Cortex-A5 processor only supports a fixed random
* replacement strategy.
* SCTLR_HA Bit 17: Not supported by A5
*
* SCTLR_EE Bit 25: Little endian (reset value).
* SCTLR_TRE Bit 28: No memory region remapping (reset value)
* SCTLR_AFE Bit 29: Full, legacy access permissions behavior (reset value).
* SCTLR_TE Bit 30: All exceptions handled in ARM state (reset value).
*/
bic r0, r0, #(SCTLR_A | SCTLR_C)
bic r0, r0, #(SCTLR_SW | SCTLR_I | SCTLR_V | SCTLR_RR | SCTLR_HA)
bic r0, r0, #(SCTLR_EE | SCTLR_TRE | SCTLR_AFE | SCTLR_TE)
/* Set bits to enable the MMU
*
* SCTLR_M Bit 0: Enable the MMU
* SCTLR_Z Bit 11: Program flow prediction control always enabled on A5
*/
orr r0, r0, #(SCTLR_M /* | SCTLR_Z */)
/* Position vectors to 0xffff0000 if so configured.
*
* SCTLR_V Bit 13: High vectors
*/
#ifndef CONFIG_ARCH_LOWVECTORS
orr r0, r0, #(SCTLR_V)
#endif
/* CR_RR - Round Robin cache replacement
*
* SCTLR_RR Bit 14: The Cortex-A5 processor only supports a fixed random
* replacement strategy.
*/
#ifndef CPU_CACHE_ROUND_ROBIN
#endif
/* CR_C - Dcache enable
*
* SCTLR_C Bit 2: DCache enable
*/
#ifndef CPU_DCACHE_DISABLE
orr r0, r0, #(SCTLR_C)
#endif
/* CR_C - Icache enable
*
* SCTLR_I Bit 12: ICache enable
*/
#ifndef CPU_ICACHE_DISABLE
orr r0, r0, #(SCTLR_I)
#endif
/* CR_A - Alignment abort enable
*
* SCTLR_A Bit 1: Strict alignment enabled
*/
#ifdef ALIGNMENT_TRAP
orr r0, r0, #(SCTLR_A)
#endif
/* Then write the configured control register */
mcr CP15_SCTLR(r0) /* Write control reg */
/* Read the Main ID register. This will be available in R1 after
* MMU trampoline (not currently used)
*/
mrc CP15_MIDR(r1) /* Read main id reg */
mov r1, r1 /* Null-avoiding nop */
mov r1, r1 /* Null-avoiding nop */
/* And "jump" to .Lvstart in the newly mapped virtual address space */
mov pc, lr
/****************************************************************************
* PC_Relative Data
****************************************************************************/
/* Most addresses are virtual address */
.type .LCvstart, %object
.LCvstart:
.long .Lvstart
#ifndef CONFIG_ARCH_ROMPGTABLE
.type .LCmmuflags, %object
.LCmmuflags:
.long MMU_MEMFLAGS /* MMU flags for memory sections */
#endif
.type .LCppgtable, %object
.LCppgtable:
.long PGTABLE_BASE_PADDR /* Physical start of page table */
#ifndef CONFIG_ARCH_ROMPGTABLE
.type .LCvpgtable, %object
.LCvpgtable:
.long PGTABLE_BASE_VADDR /* Virtual start of page table */
#endif
#ifdef CONFIG_PAGING
.Ltxtspan:
.long PG_L1_TEXT_PADDR /* Physical address in the L1 table */
.long PG_L2_TEXT_PBASE /* Physical address of the start of the L2 page table */
.long PG_TEXT_NVPAGES /* Total (virtual) text pages to be mapped */
.long PG_L2_TEXT_NPAGE1 /* The number of text pages in the first page table */
.long MMU_L1_TEXTFLAGS /* L1 MMU flags to use */
.Ltxtmap:
.long PG_L2_LOCKED_PADDR /* Physical address in the L2 table */
.long PG_LOCKED_PBASE /* Physical address of locked base memory */
.long CONFIG_PAGING_NLOCKED /* Number of pages in the locked region */
.long MMU_L2_TEXTFLAGS /* L2 MMU flags to use */
.Lptabspan:
.long PG_L1_PGTABLE_PADDR /* Physical address in the L1 table */
.long PG_L2_PGTABLE_PBASE /* Physical address of the start of the L2 page table */
.long PG_PGTABLE_NPAGES /* Total mapped page table pages */
.long PG_L2_PGTABLE_NPAGE1 /* The number of text pages in the first page table */
.long MMU_L1_PGTABFLAGS /* L1 MMU flags to use */
.Lptabmap:
.long PG_L2_PGTABLE_PADDR /* Physical address in the L2 table */
.long PGTABLE_BASE_PADDR /* Physical address of the page table memory */
.long PG_PGTABLE_NPAGES /* Total mapped page table pages */
.long MMU_L2_PGTABFLAGS /* L2 MMU flags to use */
#endif /* CONFIG_PAGING */
.size __start, .-__start
/****************************************************************************
* Name: .Lvstart
***************************************************************************/
/* The following is executed after the MMU has been enabled. This uses
* absolute addresses; this is not position independent.
*/
.align 5
.local .Lvstart
.type .Lvstart, %function
.Lvstart:
/* Remove the temporary mapping (if one was made). The following assumes
* that the total RAM size is > 1Mb and extends that initial mapping to
* cover additinal RAM sections.
*/
#ifndef CONFIG_ARCH_ROMPGTABLE
#ifndef CONFIG_IDENTITY_TEXTMAP
ldr r4, .LCvpgtable /* r4=virtual page table */
ldr r1, .LCppgtable /* r1=phys. page table */
mksection r3, r1 /* r2=phys. base addr */
mov r0, #0 /* flags + base = 0 */
str r0, [r4, r3, lsr #18] /* Undo identity mapping */
#endif
#if defined(CONFIG_PAGING)
/* Populate the L1 table for the data region */
adr r0, .Ldataspan
ldmia r0, {r0, r1, r2, r3, r4}
pg_l1span r0, r1, r2, r3, r4, r5
/* Populate the L2 table for the data region */
adr r0, .Ldatamap
ldmia r0, {r0, r1, r2, r3}
pg_l2map r0, r1, r2, r3, r4
#elif defined(CONFIG_BOOT_RUNFROMFLASH)
# error "Logic not implemented"
#else
/* Now setup the pagetables for our normal SDRAM mappings mapped region.
* We round NUTTX_START_VADDR down to the nearest megabyte boundary.
*/
ldr r1, .LCmmuflags /* FLGS=MMU_MEMFLAGS */
add r3, r3, r1 /* r3=flags + base */
add r0, r4, #(NUTTX_START_VADDR & 0xff000000) >> 18
bic r2, r3, #0x00f00000
str r2, [r0]
add r0, r0, #(NUTTX_START_VADDR & 0x00f00000) >> 18
str r3, [r0], #4
/* Now map the remaining RX_NSECTIONS-1 sections of the executable
* memory region.
*/
.rept RX_NSECTIONS-1
add r3, r3, #SECTION_SIZE
str r3, [r0], #4
.endr
/* If we are executing from RAM with a fixed page configuration, then
* we can assume that the above contiguous mapping included all of the
* .text, .data, .bss, heap, etc. But if we are executing from FLASH,
* then the RAM area is probably in a separate physical address region
* and will require a separate mapping. Or, if we are supporting on-demand
* paging of the .text region, then the RAM-based .data/.bss/heap section
* will still probably be located in a separate (virtual) address region.
*/
#endif /* CONFIG_PAGING */
#endif /* CONFIG_ARCH_ROMPGTABLE */
/* Zero BSS and set up the stack pointer */
adr r0, .Linitparms
ldmia r0, {r0, r1, sp}
/* Clear the frame pointer and .bss */
mov fp, #0
.Lbssinit:
cmp r0, r1 /* Clear up to _bss_end_ */
strcc fp, [r0],#4
bcc .Lbssinit
/* If the .data section is in a separate, unitialized address space,
* then we will also need to copy the initial values of of the .data
* section from the .text region into that .data region. This would
* be the case if we are executing from FLASH and the .data section
* lies in a different physical address region OR if we are support
* on-demand paging and the .data section lies in a different virtual
* address region.
*/
#if defined(CONFIG_BOOT_RUNFROMFLASH) || defined(CONFIG_PAGING)
adr r3, .Ldatainit
ldmia r3, {r0, r1, r2}
1: ldmia r0!, {r3 - r10}
stmia r1!, {r3 - r10}
cmp r1, r2
blt 1b
#endif
/* Perform early C-level, platform-specific initialization */
bl up_boot
/* Finally branch to the OS entry point */
2013-07-21 12:52:38 -06:00
mov lr, #0
b os_start
/* Text-section constants:
*
* _sbss is the start of the BSS region (see ld.script)
* _ebss is the end of the BSS regsion (see ld.script)
*
* The idle task stack starts at the end of BSS and is of size
* CONFIG_IDLETHREAD_STACKSIZE. The heap continues from there until the
* end of memory. See g_idle_topstack below.
*/
.Linitparms:
.long _sbss
.long _ebss
.long _ebss+CONFIG_IDLETHREAD_STACKSIZE-4
#ifdef CONFIG_PAGING
.Ldataspan:
.long PG_L1_DATA_VADDR /* Virtual address in the L1 table */
.long PG_L2_DATA_PBASE /* Physical address of the start of the L2 page table */
.long PG_DATA_NPAGES /* Number of pages in the data region */
.long PG_L2_DATA_NPAGE1 /* The number of text pages in the first page table */
.long MMU_L1_DATAFLAGS /* L1 MMU flags to use */
.Ldatamap:
.long PG_L2_DATA_VADDR /* Virtual address in the L2 table */
.long PG_DATA_PBASE /* Physical address of data memory */
.long PG_DATA_NPAGES /* Number of pages in the data region */
.long MMU_L2_DATAFLAGS /* L2 MMU flags to use */
#endif /* CONFIG_PAGING */
#if defined(CONFIG_BOOT_RUNFROMFLASH) || defined(CONFIG_PAGING)
.Ldatainit:
.long _eronly /* Where .data defaults are stored in FLASH */
.long _sdata /* Where .data needs to reside in SDRAM */
.long _edata
#endif
.size .Lvstart, .-.Lvstart
/* Data section variables */
/* This global variable is unsigned long g_idle_topstack and is
* exported from here only because of its coupling to .Linitparms
* above.
*/
.data
.align 4
.globl g_idle_topstack
.type g_idle_topstack, object
g_idle_topstack:
.long _ebss+CONFIG_IDLETHREAD_STACKSIZE
.size g_idle_topstack, .-g_idle_topstack
.end