walnux/arch/arm/armv7-a/arm_head.S

820 lines
25 KiB
ArmAsm
Raw Normal View History

/****************************************************************************
* arch/arm/src/armv7-a/arm_head.S
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership. The
* ASF licenses this file to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance with the
* License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <arch/irq.h>
#include "arm.h"
#include "sctlr.h"
2013-07-19 17:45:28 -06:00
#include "mmu.h"
#include "chip.h"
#include "arm_internal.h"
#ifndef IDLE_STACK_BASE
#ifdef CONFIG_BOOT_SDRAM_DATA
#define IDLE_STACK_BASE IDLE_STACK_VBASE
#else
#define IDLE_STACK_BASE _ebss
#endif
#endif
#define IDLE_STACK_TOP (IDLE_STACK_BASE + CONFIG_IDLETHREAD_STACKSIZE)
#ifndef CONFIG_LEGACY_PAGING
.file "arm_head.S"
/****************************************************************************
* Configuration
****************************************************************************/
/* There are three operational memory configurations:
*
* 1. We execute in place in FLASH (CONFIG_BOOT_RUNFROMFLASH=y). In this case
* the boot logic must:
*
* - Configure SDRAM (if present),
* - Initialize the .data section in RAM, and
* - Clear .bss section
*/
#ifdef CONFIG_BOOT_RUNFROMFLASH
/* Check for the identity mapping: For this configuration, this would be
* the case where the virtual beginning of FLASH is the same as the physical
* beginning of FLASH.
*/
# if !defined(CONFIG_FLASH_START) || !defined(CONFIG_FLASH_VSTART)
# error "CONFIG_FLASH_START or CONFIG_FLASH_VSTART is not defined"
# endif
# if CONFIG_FLASH_START == CONFIG_FLASH_VSTART
# define CONFIG_IDENTITY_TEXTMAP 1
# endif
/* 2. We boot in FLASH but copy ourselves to SDRAM from better performance.
* (CONFIG_BOOT_RUNFROMFLASH=n && CONFIG_BOOT_COPYTORAM=y). In this case
* the boot logic must:
*
* - Configure SDRAM (if present),
* - Copy ourself to DRAM (after mapping it), and
* - Clear .bss section (data should be fully initialized)
*
* In this case, we assume that the logic within this file executes from FLASH.
*/
#elif defined(CONFIG_BOOT_COPYTORAM)
# error "configuration not implemented"
/* Check for the identity mapping: For this configuration, this would be
* the case where the virtual beginning of FLASH is the same as the physical
* beginning of FLASH.
*/
# if !defined(CONFIG_FLASH_START) || !defined(CONFIG_FLASH_VSTART)
# error "CONFIG_FLASH_START or CONFIG_FLASH_VSTART is not defined"
# endif
# if CONFIG_FLASH_START == CONFIG_FLASH_VSTART
# define CONFIG_IDENTITY_TEXTMAP 1
# endif
/* 3. There is bootloader that copies us to SDRAM (but probably not to the beginning)
* (CONFIG_BOOT_RUNFROMFLASH=n && CONFIG_BOOT_COPYTORAM=n). In this case SDRAM
* was initialized by the boot loader, and this boot logic must:
*
* - Clear .bss section (data should be fully initialized)
*/
#else
/* Check for the identity mapping: For this configuration, this would be
* the case where the virtual beginning of RAM is the same as the physical
* beginning of RAM.
*/
# if !defined(CONFIG_RAM_START) || !defined(CONFIG_RAM_VSTART)
# error "CONFIG_RAM_START or CONFIG_RAM_VSTART is not defined"
# endif
# if CONFIG_RAM_START == CONFIG_RAM_VSTART
# define CONFIG_IDENTITY_TEXTMAP 1
# endif
#endif
/****************************************************************************
* Pre-processor Definitions
****************************************************************************/
/****************************************************************************
* Assembly Macros
****************************************************************************/
/* The ARMv7-A L1 page table can be placed at the beginning or at the end of
* the RAM space. This decision is based on the placement of the vector
* area: If the vectors are place in low memory at address 0x0000 0000, then
* the page table is placed in high memory; if the vectors are placed in
* high memory at address 0xfff0 0000, then the page table is locating at
* the beginning of RAM.
*
* For the special case where (1) the program executes out of RAM, and (2)
* the page is located at the beginning of RAM (i.e., the high vector case),
* then the following macro can easily find the physical address of the
* section that includes the first part of the text region: Since the page
* table is closely related to the NuttX base address in this case, we can
* convert the page table base address to the base address of the section
* containing both.
*/
/* This macro will modify r0, r1, r2 and r14 */
#ifdef CONFIG_DEBUG_FEATURES
.macro showprogress, code
mov r0, #\code
bl arm_lowputc
.endm
#else
.macro showprogress, code
.endm
#endif
/****************************************************************************
* Name: __start
****************************************************************************/
/* We assume the bootloader has already initialized most of the h/w for
* us and that only leaves us having to do some os specific things
* below.
*/
.text
.syntax unified
.arm
.global __start
.type __start, #function
__start:
#if defined(CONFIG_SMP) && CONFIG_SMP_NCPUS > 1
/* Get cpuindex, cpu0 continue boot, others wait event from cpu0 */
mrc CP15_MPIDR(r0)
and r0, r0, #0x3
cmp r0, #0
beq __cpu0_start
#ifdef CONFIG_ARMV7A_SMP_BUSY_WAIT
ldr r2, =CONFIG_ARMV7A_SMP_BUSY_WAIT_FLAG_ADDR
1:
ldr r1, [r2, #0]
cmp r1, #0
beq 1b
#else
wfe
#endif
cmp r0, #1
beq __cpu1_start
# if CONFIG_SMP_NCPUS > 2
cmp r0, #2
beq __cpu2_start
# endif
# if CONFIG_SMP_NCPUS > 3
cmp r0, #3
beq __cpu3_start
# endif
# if CONFIG_SMP_NCPUS > 4
cmp r0, #4
beq __cpu4_start
# endif
__cpu0_start:
#endif
arm/armv7-a/r: set the default CPU mode to System In SVC mode, the banked register will be inconsistent with the user mode register: arch/arm/src/armv7-a/arm_vectors.S 276 .globl arm_syscall 277 .globl arm_vectorsvc 278 .type arm_vectorsvc, %function 279 280 arm_vectorsvc: ... 286 sub sp, sp, #XCPTCONTEXT_SIZE // < SVC mode SP ... 308 stmia r0, {r13, r14}^ // < USR mode SP/LR ... [ 2.200000] [ 4] [ ALERT] SYSCALL Entry: regs: 0x80202708 cmd: 4 [ 2.200000] [ 4] [ ALERT] R0: 00000004 80001229 00000001 80202018 00000000 00000000 00000000 802027d0 [ 2.200000] [ 4] [ ALERT] R8: 00000000 00000000 00000000 00000000 00000000 802027d0 1080f710 1080f710 [ 2.200000] [ 4] [ ALERT] CPSR: 00000073 [ 2.200000] [ 4] [ ALERT] SYSCALL Exit: regs: 0x80202708 [ 2.200000] [ 4] [ ALERT] R0: 1 80202018 1 80202018 0 0 0 802027d0 [ 2.200000] [ 4] [ ALERT] R8: 0 0 0 0 0 802027d0 1080f710 80001229 [ 2.200000] [ 4] [ ALERT] CPSR: 00000070 SVC SP is 0x80202708 USR SP is 0x802027d0 0x802027d0 - 0x80202708 should be XCPTCONTEXT_SIZE [ 2.200000] [ 4] [ ALERT] SYSCALL Entry: regs: 0x80202708 cmd: 51 [ 2.200000] [ 4] [ ALERT] R0: 00000033 00000000 80202780 00000000 00000000 00000000 00000000 80202710 [ 2.200000] [ 4] [ ALERT] R8: 00000000 00000000 00000000 00000000 00000000 80202710 800039d5 800039b2 [ 2.200000] [ 4] [ ALERT] CPSR: 00000070 [ 2.200000] [ 4] [ ALERT] SYSCALL Exit: regs: 0x80202708 [ 2.200000] [ 4] [ ALERT] R0: 2b 0 80202780 0 0 0 0 80202710 [ 2.200000] [ 4] [ ALERT] R8: 0 0 0 0 0 10843d80 800039d5 10801425 [ 2.200000] [ 4] [ ALERT] CPSR: 00000073 SVC SP is 0x80202708 USR SP is 0x80202710 SP overlap in SVC and USR mode This commit change the default CPU mode to System and ensure the consistency of SP/LR in USR/SYS mode during syscall. Signed-off-by: chao.an <anchao@xiaomi.com>
2022-03-14 10:34:51 +08:00
/* Make sure that we are in SYS mode with IRQs and FIQs disabled */
cpsid if, #PSR_MODE_SYS
/* The MMU and caches should be disabled */
mrc CP15_SCTLR(r0)
bic r0, r0, #(SCTLR_M | SCTLR_C)
bic r0, r0, #(SCTLR_I)
mcr CP15_SCTLR(r0)
isb
/* Clear the 16K level 1 page table */
ldr r5, .LCppgtable /* r5=phys. page table */
#ifndef CONFIG_ARCH_ROMPGTABLE
mov r0, r5
mov r1, #0
add r2, r0, #PGTABLE_SIZE
.Lpgtableclear:
str r1, [r0], #4
str r1, [r0], #4
str r1, [r0], #4
str r1, [r0], #4
teq r0, r2
bne .Lpgtableclear
#ifdef ARMV7A_PGTABLE_MAPPING
/* If the page table does not lie in the same address space as does the
* mapped RAM in either case. So we will need to create a special
* mapping for the page table.
*
* Load information needed to map the page table. After the ldmia, we
* will have
*
* R1 = The aligned, physical base address of the page table
* R2 = The aligned, virtual base address of the page table
* R3 = The MMU flags to use with the .text space mapping
* R5 = The physical address of the L1 page table (from above)
*
* The value in R1 could have been obtained by simply masking R5.
*/
adr r0, .LCptinfo /* Address of page table description */
ldmia r0, {r1, r2, r3} /* Load the page table description */
/* A single page is sufficient to map the page table */
orr r0, r1, r3 /* OR MMU flags into physical address */
str r0, [r5, r2, lsr #18] /* Map using the virtual address as an index */
#endif
/* Load information needed to map the .text region. After the ldmia, we
* will have:
*
* R1 = Aligned, physical address of the start of the .text region
* R2 = Aligned, virtual address of the start of the .text region
* R3 = MMU flags associated with the .txt region
* R4 = The number of 1MB sections in the mapping
* R5 = The physical address of the L1 page table (from above)
*/
adr r0, .LCtextinfo /* Address of text info */
ldmia r0, {r1, r2, r3, r4} /* Load the text description */
2014-01-28 15:54:03 -06:00
#ifndef CONFIG_IDENTITY_TEXTMAP
/* Create identity mapping for first MB of the .text section to support
* this start-up logic executing out of the physical address space. This
* identity mapping will be removed by .Lvstart (see below). Of course,
* we would only do this if the physical-virtual mapping is not already
* the identity mapping.
*/
orr r0, r1, r3 /* OR MMU flags into physical address */
str r0, [r5, r1, lsr #18] /* Identity mapping */
#endif
/* Map the entire .text region. We do this before enabling caches so
* we know that the data will be in place in the data cache. We map the
* entire text region because we don't know which parts are needed for
* start-up.
*
* The page table base address is in R5. Each 32-bit page table entry
* maps 1 MB of address space and is indexed by the lower 20 bits of
* the virtual address in R2
*/
add r2, r5, r2, lsr #18 /* R2=Offset page table address */
2014-04-03 15:43:13 -06:00
/* Now loop until each page table entry has been written for the .text
* region.
*/
.Lpgtextloop:
orr r0, r1, r3 /* R0: OR MMU flags into physical address */
subs r4, r4, #1 /* R4: Decrement the section count */
str r0, [r2], #4 /* Save page table entry, increment page table address */
add r1, r1, #(1024*1024) /* R1: Increment the physical address */
bne .Lpgtextloop /* Loop while R4 is non-zero */
#if defined(CONFIG_BOOT_RUNFROMFLASH) && !defined(CONFIG_BOOT_SDRAM_DATA)
/* If we are executing from FLASH, then we will need additional mappings for
* the primary RAM region that holds the .data, .bss, stack, and heap memory.
*
* Here we expect to have:
* r5 = Address of the base of the L1 table
*
* Load information needed to map the .text region. After the ldmia, we
* will have:
*
* R1 = Aligned, physical address of the start of the .text region
* R2 = Aligned, virtual address of the start of the .text region
* R3 = MMU flags associated with the .txt region
* R4 = The number of 1MB sections in the mapping
* R5 = The physical address of the L1 page table (from above)
*/
adr r0, .LCraminfo /* Address of primary RAM info */
ldmia r0, {r1, r2, r3, r4} /* Load the primary RAM description */
add r2, r5, r2, lsr #18 /* R2=Offset page table address */
/* Loop until each page table entry has been written for the primary RAM
* region.
*/
.Lpgramloop:
orr r0, r1, r3 /* R0: OR MMU flags into physical address */
subs r4, r4, #1 /* R4: Decrement the section count */
str r0, [r2], #4 /* Save page table entry, increment page table address */
add r1, r1, #(1024*1024) /* R1: Increment the physical address */
bne .Lpgramloop /* Loop while R4 is non-zero */
#endif /* CONFIG_BOOT_RUNFROMFLASH && !CONFIG_BOOT_SDRAM_DATA */
#endif /* CONFIG_ARCH_ROMPGTABLE */
/* The following logic will set up the ARMv7-A for normal operation.
*
* Here we expect to have:
* r5 = Address of the base of the L1 table
*/
/* Invalidate caches and TLBs.
*
2013-07-21 12:52:38 -06:00
* NOTE: "The ARMv7 Virtual Memory System Architecture (VMSA) does not
* support a CP15 operation to invalidate the entire data cache. ...
* In normal usage the only time the entire data cache has to be
* invalidated is on reset."
*
2013-07-21 12:52:38 -06:00
* The instruction cache is virtually indexed and physically tagged but
* the data cache is physically indexed and physically tagged. So it
* should not be an issue if the system comes up with a dirty Dcache;
* the ICache, however, must be invalidated.
*/
mov r0, #0
mcr CP15_TPIDRPRW(r0) /* Initialize percpu reg TPIDRPRW */
#ifdef CONFIG_ARM_HAVE_MPCORE
mcr CP15_TLBIALLIS(r0) /* Invalidate the entire unified TLB */
mcr CP15_BPIALLIS(r0) /* Invalidate entire branch prediction array */
mcr CP15_ICIALLUIS(r0) /* Invalidate I-cache */
#else
mcr CP15_TLBIALL(r0,c7) /* Invalidate the entire unified TLB */
mcr CP15_TLBIALL(r0,c6)
mcr CP15_TLBIALL(r0,c5)
mcr CP15_BPIALL(r0) /* Invalidate entire branch prediction array */
mcr CP15_ICIALLU(r0) /* Invalidate I-cache */
#endif
isb
/* Load the page table address.
*
* NOTES:
* - Here we assume that the page table address is aligned to at least
* least a 16KB boundary (bits 0-13 are zero). No masking is provided
* to protect against an unaligned page table address.
* - The ARMv7-A has two page table address registers, TTBR0 and 1.
* Only TTBR0 is used in this implementation but both are initialized.
*
* Here we expect to have:
* r0 = Zero
* r5 = Address of the base of the L1 table
*/
orr r1, r5, #(TTBR0_RGN_WBWA | TTBR0_IRGN0) /* Select cache properties */
mcr CP15_TTBR0(r1)
mcr CP15_TTBR1(r1)
/* Set the TTB control register (TTBCR) to indicate that we are using
* TTBR0. r0 still holds the value of zero.
*
* N : 0=Selects TTBR0 and 16KB page table size indexed by VA[31:20]
* PD0 : 0=Perform translation table walks using TTBR0
* PD1 : 0=Perform translation table walks using TTBR1 (but it is disabled)
* EAE : 0=Use 32-bit translation system
*/
mcr CP15_TTBCR(r0)
/* Enable the MMU and caches
* lr = Resume at .Lvstart with the MMU enabled
*/
ldr lr, .LCvstart /* Abs. virtual address */
/* Configure the domain access register (see mmu.h). Only domain 0 is
* supported and it uses the permissions in the TLB.
2013-07-21 12:52:38 -06:00
*/
mov r0, #DACR_CLIENT(0)
2013-07-21 12:52:38 -06:00
mcr CP15_DACR(r0) /* Set domain access register */
/* Configure the system control register (see sctrl.h) */
mrc CP15_SCTLR(r0) /* Get control register */
/* Clear bits to reset values. This is only necessary in situations like, for
* example, we get here via a bootloader and the control register is in some
* unknown state.
*
* SCTLR_M Bit 0: Enable the MMU
* SCTLR_A Bit 1: Strict alignment disabled (reset value)
* SCTLR_C Bit 2: DCache disabled (reset value)
*
* SCTLR_SW Bit 10: SWP/SWPB not enabled (reset value)
* SCTLR_I Bit 12: ICache disabled (reset value)
* SCTLR_V Bit 13: Assume low vectors (reset value)
* SCTLR_RR Bit 14: The Cortex-A5 processor only supports a fixed random
* replacement strategy.
* SCTLR_HA Bit 17: Not supported by A5
*
2015-12-26 14:47:54 -06:00
* SCTLR_EE Bit 25: 0=Little endian (reset value).
* SCTLR_TRE Bit 28: No memory region remapping (reset value)
* SCTLR_AFE Bit 29: Full, legacy access permissions behavior (reset value).
* SCTLR_TE Bit 30: All exceptions handled in ARM state (reset value).
*/
bic r0, r0, #(SCTLR_A | SCTLR_C)
bic r0, r0, #(SCTLR_SW | SCTLR_I | SCTLR_V | SCTLR_RR | SCTLR_HA)
bic r0, r0, #(SCTLR_EE | SCTLR_TRE | SCTLR_AFE | SCTLR_TE)
#ifndef CONFIG_SMP
/* Set bits to enable the MMU
*
* SCTLR_M Bit 0: Enable the MMU
* SCTLR_Z Bit 11: Program flow prediction control always enabled on A5
*/
orr r0, r0, #(SCTLR_M)
#endif
#ifndef CONFIG_ARCH_CORTEXA5
orr r0, r0, #(SCTLR_Z)
#endif
2014-01-28 15:54:03 -06:00
#ifndef CONFIG_ARCH_LOWVECTORS
/* Position vectors to 0xffff0000 if so configured.
*
* SCTLR_V Bit 13: High vectors
*/
orr r0, r0, #(SCTLR_V)
#endif
#if defined(CONFIG_ARMV7A_CACHE_ROUND_ROBIN) && !defined(CONFIG_ARCH_CORTEXA5)
/* Round Robin cache replacement
*
* SCTLR_RR Bit 14: The Cortex-A5 processor only supports a fixed random
* replacement strategy.
*/
orr r0, r0, #(SCTLR_RR)
#endif
/* In SMP configurations, the data cache will not be enabled until later
* after SMP cache coherency has been setup.
*/
#if !defined(CONFIG_ARMV7A_DCACHE_DISABLE) && !defined(CONFIG_SMP)
/* Dcache enable
*
* SCTLR_C Bit 2: DCache enable
*/
orr r0, r0, #(SCTLR_C)
#endif
#if !defined(CONFIG_ARMV7A_ICACHE_DISABLE) && !defined(CONFIG_SMP)
/* Icache enable
*
* SCTLR_I Bit 12: ICache enable
*/
orr r0, r0, #(SCTLR_I)
#endif
#ifdef CONFIG_ARMV7A_ALIGNMENT_TRAP
/* Alignment abort enable
*
* SCTLR_A Bit 1: Strict alignment enabled
*/
orr r0, r0, #(SCTLR_A)
#endif
2015-12-26 14:47:54 -06:00
#ifdef CONFIG_ENDIAN_BIG
/* Big endian mode
*
* SCTLR_EE Bit 25: 1=Big endian.
*/
orr r0, r0, #(SCTLR_EE)
#endif
#ifdef CONFIG_ARMV7A_AFE_ENABLE
/* AP[0:2] Permissions model
*
* SCTLR_AFE Bit 29: Full, legacy access permissions behavior (reset value).
*
* When AFE=1, the page table AP[0] is used as an access flag and AP[2:1]
* control. When AFE=0, AP[2:0] control access permissions.
*/
orr r0, r0, #(SCTLR_AFE)
#endif
/* Then write the configured control register */
mcr CP15_SCTLR(r0) /* Write control reg */
isb
.rept 12 /* Cortex A8 wants lots of NOPs here */
nop
.endr
/* And "jump" to .Lvstart in the newly mapped virtual address space */
mov pc, lr
/****************************************************************************
* PC_Relative Data
****************************************************************************/
/* The physical base address of the page table */
.type .LCppgtable, %object
.LCppgtable:
.long PGTABLE_BASE_PADDR /* Physical start of page table */
.size .LCppgtable, . -.LCppgtable
#ifdef ARMV7A_PGTABLE_MAPPING
/* Page table region description. The order of these fields must not
* change because the values are loaded using ldmia:
*
* 1) The aligned, physical base address of the page table
* 2) The aligned, virtual base address of the page table
* 3) The MMU flags to use with the .text space mapping
*/
.type .LCptinfo, %object
.LCptinfo:
.long (PGTABLE_BASE_PADDR & 0xfff00000) /* Physical base address */
.long (PGTABLE_BASE_VADDR & 0xfff00000) /* Virtual base address */
.long MMU_MEMFLAGS /* MMU flags for text section in RAM */
.size .LCptinfo, . -.LCptinfo
#endif
#ifndef CONFIG_ARCH_ROMPGTABLE
/* Text region description. The order of these fields must not change
* because the values are loaded using ldmia:
*
* 1) The aligned, physical base address of the .text section
* 2) The aligned, virtual base address of the .text section
* 3) The MMU flags to use with the .text space mapping
* 4) The number of 1MB sections in the .text region
*
* Values provided for NUTTX_TEXT_* must all be properly aligned to 1MB
* address boundaries
*/
.type .LCtextinfo, %object
.LCtextinfo:
.LCptextbase:
.long NUTTX_TEXT_PADDR /* Physical base address */
.long NUTTX_TEXT_VADDR /* Virtual base address */
.LCtextflags:
#ifdef CONFIG_BOOT_RUNFROMFLASH
.long MMU_ROMFLAGS /* MMU flags text section in FLASH/ROM */
#else
.long MMU_MEMFLAGS /* MMU flags for text section in RAM */
#endif
.long (NUTTX_TEXT_SIZE >> 20) /* Number of 1MB read-execute sections */
.size .LCtextinfo, . -.LCtextinfo
#ifdef CONFIG_BOOT_RUNFROMFLASH
/* Primary RAM region description. The order of these fields must not change
* because the values are loaded using ldmia:
*
* 1) The aligned, physical base address of the primary RAM section
* 2) The aligned, virtual base address of the primary RAM section
* 3) The MMU flags to use with the primary RAM space mapping
* 4) The number of 1MB sections in the primary RAM region
*
* Values provided for NUTTX_RAM_* must all be properly aligned to 1MB
* address boundaries
*/
.type .LCraminfo, %object
.LCraminfo:
.long NUTTX_RAM_PADDR /* Physical base address */
.long NUTTX_RAM_VADDR /* Virtual base address */
.long MMU_MEMFLAGS /* MMU flags for primary RAM section */
.long (NUTTX_RAM_SIZE >> 20) /* Number of 1MB read-execute sections */
.size .LCraminfo, . -.LCraminfo
#endif /* CONFIG_BOOT_RUNFROMFLASH */
#endif /* CONFIG_ARCH_ROMPGTABLE */
/* The virtual start address of the second phase boot logic */
.type .LCvstart, %object
.LCvstart:
.long .Lvstart
.size .LCvstart, . -.LCvstart
.size __start, .-__start
/****************************************************************************
* Name: .Lvstart
***************************************************************************/
/* The following is executed after the MMU has been enabled. This uses
* absolute addresses; this is not position independent.
*/
.align 5
.local .Lvstart
.type .Lvstart, %function
.Lvstart:
2014-01-28 15:54:03 -06:00
#if !defined(CONFIG_ARCH_ROMPGTABLE) && !defined(CONFIG_IDENTITY_TEXTMAP)
/* Remove the temporary mapping (if one was made). The following assumes
* that the total RAM size is > 1Mb and extends that initial mapping to
* cover additional RAM sections.
*/
ldr r5, .LCvpgtable /* r5=Virtual page table base address */
ldr r3, .LCptextbase /* r0=Physical base address of .text section */
mov r0, #0 /* flags + base = 0 */
str r3, [r5, r3, lsr #18] /* identity mapping */
#endif /* !CONFIG_ARCH_ROMPGTABLE && !CONFIG_IDENTITY_TEXTMAP */
/* Set up the stack pointer and clear the frame pointer */
ldr sp, .Lstackpointer
bic sp, sp, #7 /* Get the stack pointer with 8-byte alignment */
mov fp, #0
2014-01-28 15:54:03 -06:00
#ifndef CONFIG_BOOT_SDRAM_DATA
/* Initialize .bss and .data ONLY if .bss and .data lie in SRAM that is
* ready to use. Other memory, such as SDRAM, must be initialized before
2016-05-12 13:42:19 -06:00
* it can be used. arm_boot() will perform that memory initialization and
* .bss and .data can be initialized after arm_boot() returns.
*/
bl arm_data_initialize
#endif
/* Perform early C-level, platform-specific initialization. Logic
* within arm_boot() must configure SDRAM and call arm_data_initialize().
*/
2016-05-12 13:42:19 -06:00
bl arm_boot
/* finish busy wait */
#ifdef CONFIG_ARMV7A_SMP_BUSY_WAIT
ldr r0, =CONFIG_ARMV7A_SMP_BUSY_WAIT_FLAG_ADDR
mov r1, #1
str r1, [r0]
dsb sy
#endif
/* Finally branch to the OS entry point */
mov lr, #0 /* LR = return address (none) */
b nx_start /* Branch to nx_start */
.size .Lvstart, .-.Lvstart
/***************************************************************************
* Name: arm_data_initialize
***************************************************************************/
.global arm_data_initialize
.weak arm_data_initialize
.type arm_data_initialize, #function
arm_data_initialize:
/* Zero BSS */
adr r0, .Linitparms
ldmia r0, {r0, r1}
mov r2, #0
1:
cmp r0, r1 /* Clear up to _bss_end_ */
strcc r2, [r0], #4
bcc 1b
2014-01-28 15:54:03 -06:00
#ifdef CONFIG_BOOT_RUNFROMFLASH
/* If the .data section is in a separate, uninitialized address space,
* then we will also need to copy the initial values of the .data
* section from the .text region into that .data region. This would
* be the case if we are executing from FLASH and the .data section
* lies in a different physical address region OR if we are support
* on-demand paging and the .data section lies in a different virtual
* address region.
*/
adr r3, .Ldatainit
ldmia r3, {r0, r1, r2}
2:
ldr r3, [r0], #4
str r3, [r1], #4
cmp r1, r2
blt 2b
#endif
/* And return to the caller */
bx lr
.size arm_data_initialize, . - arm_data_initialize
/***************************************************************************
* Text-section constants
***************************************************************************/
/* Text-section constants:
*
* _sbss is the start of the BSS region (see linker script)
* _ebss is the end of the BSS region (see linker script)
*
* Typical Configuration:
* The idle task stack usually starts at the end of BSS and is of size
* CONFIG_IDLETHREAD_STACKSIZE. The heap continues from there until the
* end of memory. See g_idle_topstack below.
*
* In the case where CONFIG_BOOT_SDRAM_DATA is defined, the IDLE stack is
* in ISRAM, but the heap is in SDRAM beginning at _ebss and extending
* to the end of SDRAM.
*/
#ifndef CONFIG_ARCH_ROMPGTABLE
/* The virtual base address of the page table */
.type .LCvpgtable, %object
.LCvpgtable:
.long PGTABLE_BASE_VADDR /* Virtual start of page table */
.size .LCvpgtable, . -.LCvpgtable
#endif /* CONFIG_ARCH_ROMPGTABLE */
.type .Linitparms, %object
.Linitparms:
.long _sbss
.long _ebss
.size .Linitparms, . -.Linitparms
.Lstackpointer:
.long IDLE_STACK_TOP
.size .Lstackpointer, . -.Lstackpointer
#ifdef CONFIG_BOOT_RUNFROMFLASH
.type .Ldatainit, %object
.Ldatainit:
.long _eronly /* Where .data defaults are stored in FLASH */
.long _sdata /* Where .data needs to reside in SDRAM */
.long _edata
.size .Ldatainit, . -.Ldatainit
#endif
/***************************************************************************
* Data section variables
***************************************************************************/
/* This global variable is unsigned long g_idle_topstack and is
* exported from here only because of its coupling to .Lstackpointer
* above.
*/
.section .rodata, "a"
.align 4
.globl g_idle_topstack
.type g_idle_topstack, object
g_idle_topstack:
.long IDLE_STACK_TOP
.size g_idle_topstack, .-g_idle_topstack
.end
#endif